St. Gerard's Catholic Primary and Nursery School

St Gerard's Catholic Primary and Nursery School

Calculation Policy 2021-22

Introduction:

This policy is written to serve the requirements of the 2014 National Curriculum. It provides guidance on the appropriate calculation methods and progression. The content is divided into the four main operations: addition, subtraction, multiplication and division. Pupils should still make connections between different mathematical strands so that they develop fluency and reasoning and problem solving skills. This Policy is supported a progression document which details the route of progression through the year groups. Children should be given the opportunity to explore the concrete, pictorial and abstract in order to broaden and add depth to their understanding.

AIMS OF THE POLICY:
To ensure consistency and progression in our approach to calculation
To ensure that children develop an efficient, reliable, formal written method of calculation for all operations
To ensure that children can use these methods accurately with confidence and understanding

Addition:

Written methods for addition

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of addition. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for addition which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for addition, each stage building towards a more refined method.

There are some key basic skills that children need to help with addition, which include:

- counting
- estimating
- recalling all addition pairs to 10,20 and $100(7+3=10,17+3=20,70+30=100)$
- knowing number facts to $10(6+2=8)$
- adding mentally a series of one-digit numbers (5+8+4)
- adding multiples of $10(60+70)$ or of $100(600+700)$ using the related addition fact, $6+7$, and their knowledge of place value
- partitioning two-digit and three-digit numbers into multiples of 100,10 and 1 in different ways (432 into $400+30+2$ and also into $300+120+12$)
- understanding and using addition and subtraction as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Objective, Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Comparing Objects, groups of objects Length, weight, mass, heavier, lighter, same, equal	People's height, distance, mass. Use of pan balances using numicon to show equivalence, < > Comparing multiple objects Use of concrete materials eg. Compare bears, jewels, cubes etc to create groups of different sizes to compare		
Using < > and = Fewer, more, less than, more than, equal to, fewer than	Use a multilink staircase in two colours	00000	Use variation with missing boxes and missing symbols. $\begin{array}{ll} 3 \bigcirc 4 & 4>\square \\ 2 \bigcirc 2 & \square<6 \end{array}$
Finding one more, finding one less			One more/less sentences - example one: 1 more than 3 is \square 1 less than 2 is 1 more than \square is 1 1 less than \square is 1

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract.
Regrouping to make 10. This is an essential skill for column oddition later.	2 more than 5 .	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	Start with the bigger number and use the smaller number to make 10. Use ten frame	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$ (14)	Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. . ' 8 is 3 more than 5.'

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Adding multiples of ten	$50=30+20$ Model using dienes and bead strings	tens and \qquad tens makes \qquad tens Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \\ & \square+30=50 \end{aligned}$
Use known number facts Part part whole		$\begin{gathered} \square+\square=20 \\ \square+\square=\square \\ \square+\square=20 \\ 20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$
Using known facts		 Children draw representations of H, T and O	$3+4=7$ Leads to $30+40=70$ Leads to $300+400+700$ ' 3 things and 4 things is always 7 things'
Bar model	$3+4=7$		30 14 16$14+16=30$

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part part whole and number line to model.	22 $22+5=22$ 17 5 Explore related facts $17+5=22$ $22=17+5$ $5+17=22$ $22=5+17$ $22-17=5$ $17=22-5$ $22-5=17$ $5=22-17$
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \\ & \square+30=67 \end{aligned}$
Add two 2-digit numbers without bridging. 'Friendly numbers'	Model using dienes , place value counters and numicon	 Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \quad 40+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Add any two 2-digit numbers	Dienes and part-part-whole model:	$26+30+7$	$24+38=$ \square $29+\square=51$ $38+24=$ \square \square $+22=51$
Add three 1-digit numbers	Combine to make magic 10 first where relevant, or bridge 10 then add third	Use language of fist, then, then, now Pictorial: Use part part whole to show magic ten	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.
Adding two numbers that bridge 10.	Use double sided counters and ten frames. Move counters to fill the ten frame and make Magic 10	Show on a number line how 5 is portioned into adding three, then adding 2.	

Objective \& Strateg	Concrete	Pictorial	Abstract
Y4-add numbers with up to 4 digits		\bullet \ddots \bullet \ddots $\because \because$ \ddots \bullet \ddots \ddots \ddots 7 1 5 1 \bullet \bullet Draw representations using pv grid.	$\begin{array}{r} 2634 \\ +4517 \\ \hline 7141 \\ \hline 11 \end{array}$ Continue from previous work to carry ones, tens and hundreds. Relate to money and measures.
Y5-add numbers with more than 4 digits. Add decimals with 2 dec imal places, including money.	As year 4 Introduce decimal place value counters	$2.37+81.79$ tens ones tentry hundredts 00 000 00000 00000 0 0 ot 00 00000 00000 000 0000	
Y6-add several numbers of increasing complexity Including adding money, measure and decimals with different numbers of decimal points.	Some children may need to ruse manipulatives and/or representations for longer. See year 5		

Subtraction:

Written methods for Subtraction

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of subtraction. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for subtraction which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for subtraction, each stage building towards a more refined method.

There are some key basic skills that children need to help with subtraction, which include:

- counting
- estimating
- recalling all addition pairs to 10,20 and 100 along with their inverses $(7+3=10,10-3=7,17+3=20,20-3$
$=17,70+30=100,100-30=70)$
- knowing number facts to 10 and their inverses ($6+2=8,8-2=6$)
- subtracting multiples of 10 (160-70) using the related subtraction fact, 16-7, and their knowledge of place value
- partitioning two-digit and three-digit numbers into multiples of 100,10 and 1 in different ways (432 into $400+$ $30+2$ and also into $300+120+12$)
- understanding and using subtraction and addition as inverse operations Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:
- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

|
 Strategy |
| :--- | :--- | :--- | :--- |
| Represent and use
 number bonds and
 related subtraction
 facts within 20 |
| Part-Part-Whole |
| model |

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting by making 10	Make 15 on the $15-9=$ ten frame. Take 15-9 5 away to make ten, then take 4 more away so $15-5=10$ that you have $10^{-4}=6$ taken 9.	$15-9=$ Jump back 5 first, then another 4 . Use ten as the stopping point.	$16-9=$ How many do we take off first to get to 10 ? How many left to take off?
Counting on to next ten Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	$34-28=$ $34-28$ Use a bead bar or bead strings to model counting to next ten and the rest. $28 \text { to } 30 \text { is } 2,30 \text { to } 34 \text { is } 4 \text {. } \mathrm{So}, 34-28=6$	Use a number line to count on to next ten and then the rest. Begin with bead line, move to landmarked line then to ENL.	$\begin{aligned} & \quad 93-76=17 \\ & 76 \longrightarrow 80=4 \\ & 80 \longrightarrow 93=13 \\ & 13+4=17 \end{aligned}$
Subtractions as difference			The difference between 24 and 16 is 8 .

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting a multiple of 10			$\begin{aligned} & 64-10=\square \\ & 64-20=\square \\ & 64-30=\square \\ & 64-\square=24 \\ & \square-50=14 \end{aligned}$
Subtract a single digit from a two digit number No regrouping	(3) $(26$ Explore that $9-3=6$ so $29-3=26$ etc	$9-3=6$ $19-3=16$	$9-3=6$ 19-6=13 $29-6=23$ etc
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'.	$20-4=16$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	$43-21=22$ Children draw representations of Dienes and cross off.	$43-21=22$

 Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -20+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	Begin by partitioning into pv columns Then move to formal method.

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal point.	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{aligned} & { }^{2} 8^{10} X^{1} 0^{4} 8^{1} 6 \\ & -\frac{2128}{28,928} \\ & \begin{array}{l} \text { Use zeros } \\ \text { for place- } \\ \text { holders. } \end{array}-\frac{{ }^{6} 7^{10} 1^{1} 69}{8} \cdot{ }^{1} 0 \\ & \hline 6796 \cdot 5 \end{aligned}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

Multiplication

Written methods for Multiplication

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of multiplication. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for multiplication which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for multiplication, each stage building towards a more refined method.
There are some key basic skills that children need to help with multiplication, which include:

- counting
- estimating
- understanding multiplication as repeated addition
- recalling all multiplication facts to 12×12
- partitioning numbers into multiples of one hundred, ten and one
- working out products $(70 \times 5,70 \times 50,700 \times 5,700 \times 50)$ using the related fact 7×5 and their knowledge of place value
- adding two or more single-digit numbers mentally
- adding multiples of $10(60+70)$ or of $100(600+700)$ using the related addition fact, $6+7$, and their knowledge of place value
- adding combinations of whole numbers
- understanding and using division and multiplication as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

 Strategy	Concrete	Pictorial
Double numbers to 10	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling $+$ $=$ 0 \square $+$ \square $=$ double 4 is 8 00 $+$ \qquad $=$	Draw pictures and bar models to show how to double numbers
Counting in groups of 2	Count in 2 s using real life objects and contexts.	Children make representations to show counting in multiples of 2.Count in multiples of a number aloud. : Show jumps of 2 on a number line
Counting in groups of 10	Use real life objects and contexts to count in groups of 10	Use and draw representations for counting in multiples of 10 . Count in multiples of 10 aloud Show jumps of 10 on a number line
Counting in groups of 5	Use real life objects and contexts to count in groups of 5	Use and draw representations for counting in multiples of 5. Count in 5 s aloud.

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Strategy |
| Understand and use |
| arrays |

Objective \& Strategy	Concrete	Pictorial	Abstract
Double a 2-digit number	Model doubling using dienes and PV 	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before rerombining it back toget $20+12=32$
Understand equal and non-equal groups	These are non- equal groups These are equal groups There are 5 equal groups. Each group has 3 cakes.	Make representations and drawings of equal groups I have 4 groups of 3 .	

Objective \& Strategy	Concrete	Pictorial	Abstract
Use repeated addition for multiplications	Use objects and real life contexts. There are 5 groups of 2. There are 10 socks altogether. There are 3 groups of 3 . There are 9 altogether.	Make and draw representations to show repeated addition There are 3 sweets in one bag. How many sweets are in 5 bags altogether? Use bar models for representations of repeated additions.	Create number sentences using repeated addition to match representations. $3+3+3+3=12$
Relate repeated addition to multiplication using the x sign.	Write multiplication sentences to match repeated addition. $2+2+2+2$	Children make and draw representations and record both an addition sentence and a multiplication sentence. $1+1+1+1+1+1=6$ $6 \times 1+6$	Write multiplication sentences to match repeated addition, without the support of representations. $\begin{aligned} & 2+2+2+2+2=10 \\ & 5 \times 2=10 \end{aligned}$

Divisibility rules in 'families' $\mathbf{- 2 , 4}$ and $\mathbf{8}$	
$\mathbf{2}$	A number is divisible by 2 if the ones digit is even.
$\mathbf{4}$	If halving a number gives an even value, then the number is divisible by 4. and For numbers with more than two digits: if the final two digits are divisible by 4 then the number is divisible by 4.
$\mathbf{8}$	If halving a number twice gives an even value, the number is divisible by 8.

Divisibility rules in 'families' $-2,4$ and 8

Objective \& Strategy	Concrete	Pictorial	Abstract
Understanding the commutative law.	"Three groups of five is equal to five groups of three."		$\begin{aligned} & 3 \times 5=15 \\ & 5 \times 3=15 \\ & 5 \times 3=3 \times 5=15 \\ & 15 \div 3=5 \\ & 15 \div 5=3 \end{aligned}$
Understanding the distributive law			$4 \times 5=3 \times 5+5=20$ $4 \times 5=5 \times 5-5=20$

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiply decimals up to2 decimal places by a single digit			$\begin{array}{r} 2.38 \\ \times \quad 3 \end{array}$
			714
			First we lay out the calculation
			Next, we write the decimal point in the answer (product).
			Finally, we carry out the multiplication.
			3×8 hundredths is 24 hundredths
			3×3 tenths is 9 tenths, add 2 tenths we carried is 11 tenths
			3×3 ones is 6 ones, add 1 one we carried is 7 ones
Multiply up to 4 digit numbers by 2 digits.			X
			312
			$\times \quad 28$
			$\begin{array}{llll}2 & 4 & 9 & 6\end{array}$
			$\begin{array}{llll}6 & 2 & 4 & 0\end{array}$
			$\begin{array}{llll}8 & 7 & 3\end{array}$
			1

Division

Written methods for Division

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of division. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for division which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for division, each stage building towards a more refined method.
There are some key basic skills that children need to help with subtraction, which include:

- counting
- estimating
- understanding division as repeated subtraction
- partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways (432 into $400+30+2$ and also into $300+120+12$)
- recalling multiplication and division facts to 12×12
- recognising multiples of one-digit numbers and dividing multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value
- knowing how to find a remainder working mentally, for example, find the remainder when 48 is divided by 5
- understanding and using division and multiplication as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

| |
| :---: | :---: | :---: | :---: |
| Strategy | Find half of numbers | Real ife and practical contexts are used to find half of numbers up to |
| :--- |
| to 20. |

 Strategy		Concrete
Understand division		
as sharing into equal		
groups		
Use Gordon ITPs for		
modelling		

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing (partitive)	There are 20 conkers shared equally between 5 children.	Children use pictures or shapes to share quantities. They may use bar modelling to show and support understanding. Number lines are used to show skip counting (counting forwards) and repeated subtraction (counting backwards).	$20 \div 5=4$
Division as grouping (quotitive)	Use cubes, counters or real objects or to aid understanding. There are 15 biscuits, there are 5 in each bag. How many bags?		15 divided into groups of 5 is 3 $15 \div 5=3$

Strategy

Understanding the
Inverse

Objective \& Strategy	Concrete	Pictorial	Abstract
Division with remainders. (partitive)	I divide 14 cakes between 3 plates. How are the cakes shared?	Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r . $14 \div 3=4 r 2$
Division with remainders. (quotitive)	13 eggs are put into boxes. Each box holds 3 eggs. How are the eggs boxed? manmanganean o	Children may draw representations to show their understanding. Use bar models to show division with remainders.	$13 \div 3=4 \mathrm{r} 1$

Divisibility rules in 'families' $-3,6$ and 9	
$\mathbf{3}$	For a number to be divisible by 3 , the sum of the digits of the number must be divisible by 3.
$\mathbf{6}$	For a number to be divisible by 6, the number must be divisible by both 2 and 3.
$\mathbf{9}$	For a number to be divisible by 9, the sum of the digits of the number must be divisible by 9.

Divisibility rules in 'families' $\mathbf{- 5}$ and $\mathbf{1 0}$	
$\mathbf{5}$	A number is divisible by 5 if the ones digit is 5 or 0.
$\mathbf{1 0}$	A number is divisible by $\mathbf{1 0}$ if the ones digit is 0.

Divisibility rules in numerical order	
$\mathbf{2}$	A number is divisible by 2 if the ones digit is even.
$\mathbf{3}$	For a number to be divisible by 3, the sum of the digits of the number must be divisible by 3.
$\mathbf{4}$	If halving a number gives an even value, then the number is divisible by 4. and For numbers with more than two digits: if the final two digits are divisible by 4 then the number is divisible by 4.
$\mathbf{5}$	A number is divisible by 5 if the ones digit is 5 or 0.
$\mathbf{6}$	For a number to be divisible by 6, the number must be divisible by both 2 and 3.
$\mathbf{8}$	If halving a number twice gives an even value, the number is divisible by 8.
$\mathbf{9}$	For a number to be divisible by 9, the sum of the digits of the number must be divisible by 9.
$\mathbf{1 0}$	A number is divisible by 10 if the ones digit is 0.

| Objective
 \& Strategy | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Divide decimals by
 a single digit, using
 xand \div by 10 or
 100 | | | Pupils use understanding of x and $\div 10$ to make connections. |

Y6

Long Division-procedural summary (remainder in any of the digits)			
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.	
$\begin{gathered} { }^{n+0} \\ \frac { 1 } { 2 } \longdiv { 2 7 8 } \end{gathered}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h+0 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.	
Divide.	Multiply \& subtract.	Drop down the next digit.	
$\begin{gathered} \begin{array}{c} n+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \end{array} . \begin{array}{l} \\ \hline \end{array}{ }^{2}+ \end{gathered}$ Divide 2 into 7 . Place 3 into the quotient.	$\begin{gathered} h \not 0_{0} \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} n 10 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.	
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.	
$\begin{gathered} n \not 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{gathered} h+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 18 \\ \hline-18 \\ \hline 0 \end{gathered}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{gathered} n+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \\ \frac{-18}{0} \end{gathered}$ There are no more digits to drop down. The quotient is 139 .	

