

St. Gerard's Catholic Primary and Nursery School

St Gerard's Catholic Primary and Nursery School

Calculation Policy 2021-22

Introduction:

This policy is written to serve the requirements of the 2014 National Curriculum. It provides guidance on the appropriate calculation methods and progression. The content is divided into the four main operations: addition, subtraction, multiplication and division. Pupils should still make connections between different mathematical strands so that they develop fluency and reasoning and problem solving skills. This Policy is supported a progression document which details the route of progression through the year groups. Children should be given the opportunity to explore the concrete, pictorial and abstract in order to broaden and add depth to their understanding.

AIMS OF THE POLICY:

To ensure consistency and progression in our approach to calculation

To ensure that children develop an efficient, reliable, formal written method of calculation for all operations

To ensure that children can use these methods accurately with confidence and understanding

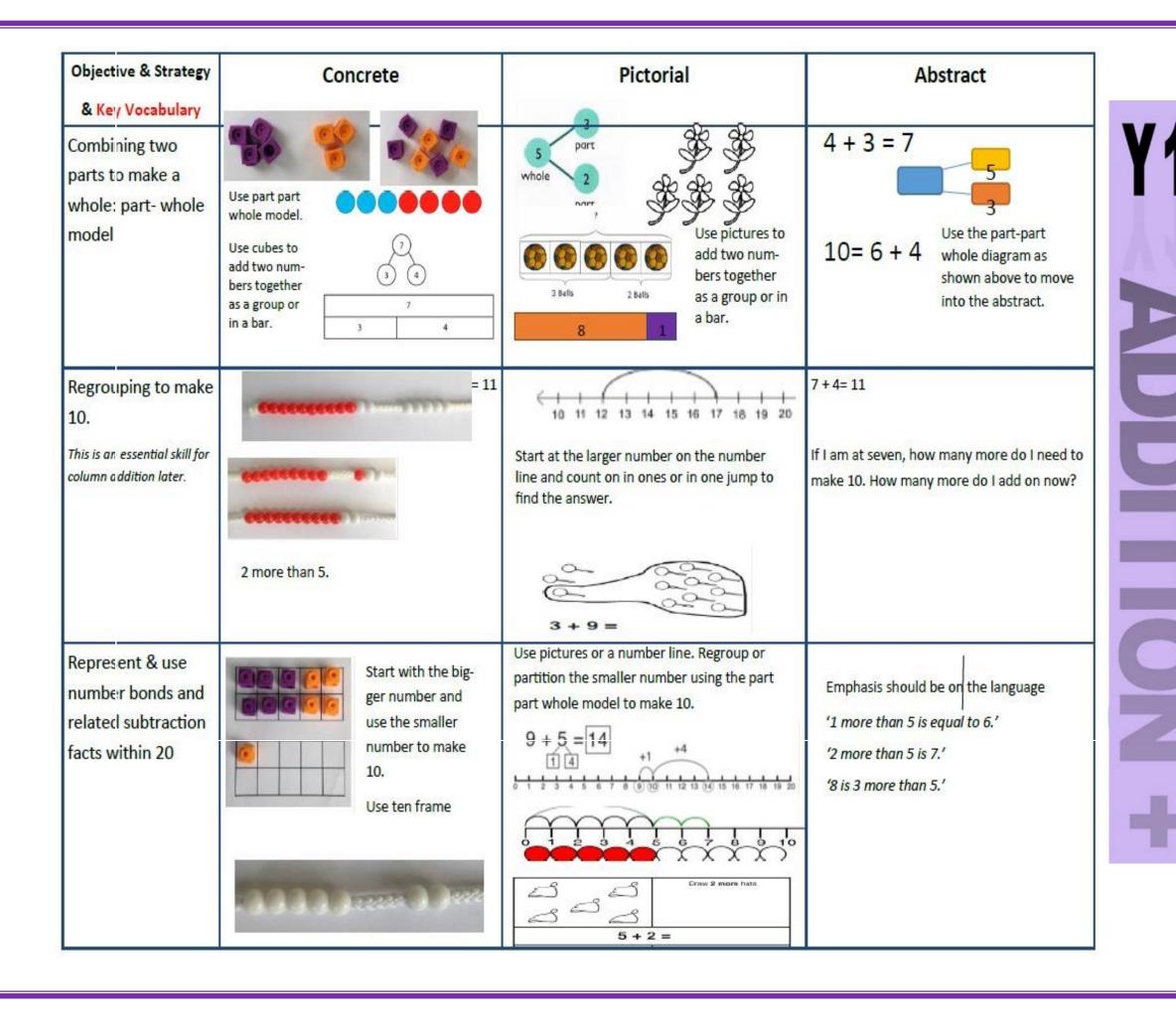
Addition:

St. Gerard's Catholic Primary and Nursery School

Written methods for addition

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of addition. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for addition which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for addition, each stage building towards a more refined method.

There are some key basic skills that children need to help with addition, which include:


- counting
- estimating
- recalling all addition pairs to 10, 20 and 100 (7 + 3 = 10, 17 + 3 = 20, 70 + 30 = 100)
- knowing number facts to 10 (6 + 2 = 8)
- adding mentally a series of one-digit numbers (5 + 8 + 4)
- adding multiples of 10 (60 + 70) or of 100 (600 + 700) using the related addition fact, 6 + 7, and their knowledge of place value
- partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways (432 into 400 + 30 + 2 and also into 300 + 120 + 12)
- understanding and using addition and subtraction as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Objective, Strategy & Key Vocabulary	Concrete	Pictorial	Abstract
Comparing Objects, groups of objects Length, weight, mass, heavier, light- er, same, equal	People's height, distance, mass. Use of pan balances using numicon to show equivalence, < > Comparing multiple objects Use of concrete materials eg. Compare bears, jewels, cubes etc to create groups of different sizes to compare		
Using < > and = Fewer, more, less than, more than, equal to, fewer than	Use a multilink staircase in two colours	1<3 2 = 2 3>1	Use variation with missing boxes and missing symbols. 3
Finding one more, finding one less	1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1 1 more more more more more more more more	One more/less sentences – example one: 1 more than 3 is 1 less than 2 is 1 more than is 1 1 less than is 1

Objective, Strategy & Key Vocabulary	Concrete	Pictorial	Abstract
Adding 1 gives 1 more	First Then Now	First Then Now	6 +1 7 6+1=7
Augmentation— increasing an amount	Use FIRST, THEN, NOW and range of practical situations for showing augmentation. E.g. first there were three chn on carpet then 2 more came. Now there are 5 chn on the carpet.	First Then Now	4 +3 7 4+3=7
Stories of numbers within 10	Children should work with doubled sided counters and ten frame. Start with 7 red, turn one over, tell me the 'story'? Turn one more over. What is the 'story'? Continue.	7 + 0 = 7 6 + 1 = 7 5 + 2 = 7 Complete for all numbers up to 10	7+0=7 6+1=7 5+2=7 4+3=7 3+4=7 2+5=7
	Complete this for stories of all numbers up to 10.		1+6=7 0+7=7

Adding I and 2

Bonds to 10

Adding 10

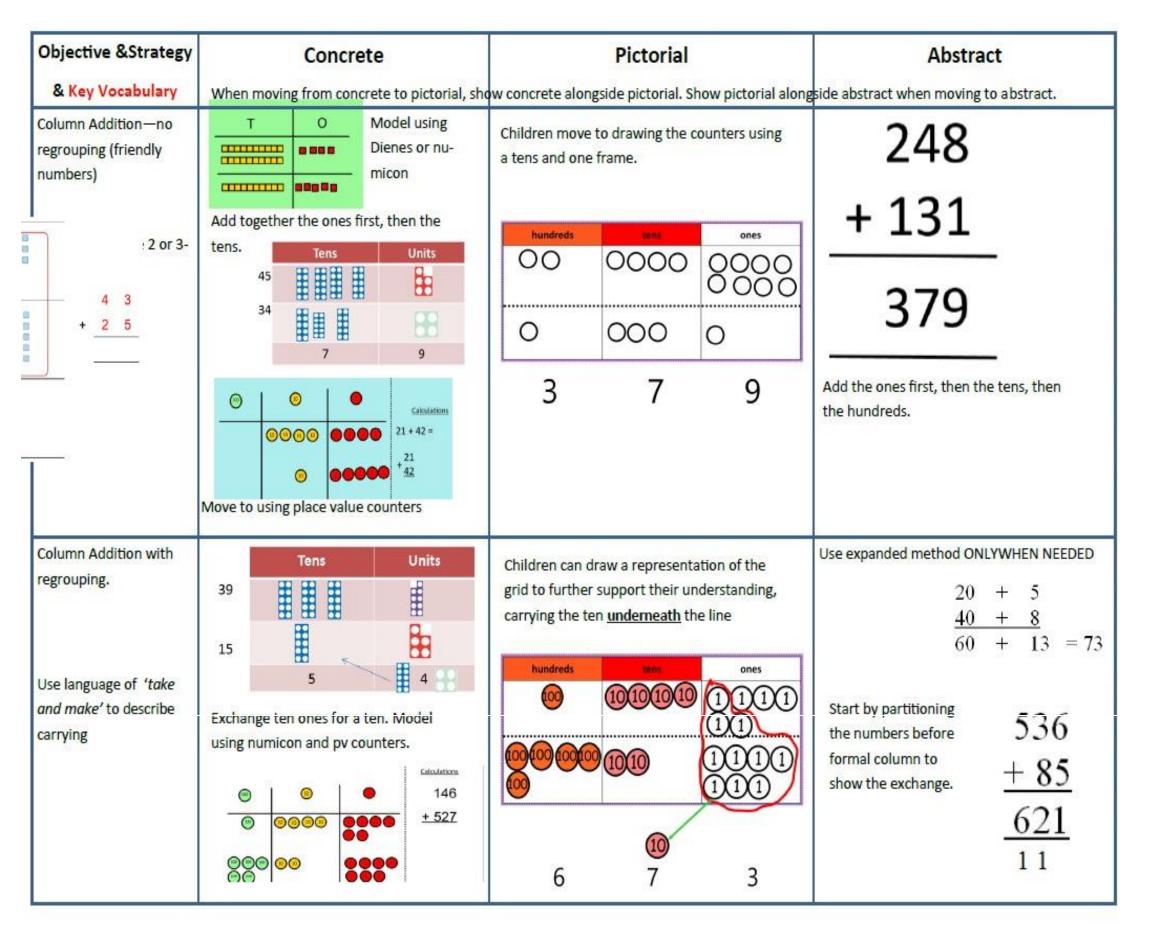
Bridging/ compensating YI facts Y2 facts

Y1/2

Doubles

Adding 0

Near doubles


+	0	I	2	3	4	5	6	7	8	9	10
0	0+0	0+1	0 + 2	0 + 3	0 + 4	0 + 5	0 + 6	0 + 7	0 + 8	0 + 9	0 + 10
ı	I + 0	+	I + 2	+ 3	l + 4	I + 5	l + 6	I + 7	I + 8	I + 9	+ 10
2	2+0	2+	2 + 2	2 + 3	2 + 4	2 + 5	2 + 6	2 + 7	2 + 8	2 + 9	2 + 10
3	3 + 0	3 +	3 + 2	3 + 3	3 + 4	3 + 5	3 + 6	3 + 7	3 + 8	3 + 9	3 + 10
4	4+0	4+	4 + 2	4 + 3	4 + 4	4 + 5	4 + 6	4 + 7	4 + 8	4 + 9	4 + 10
5	5 + 0	5 +	5 + 2	5 + 3	5 + 4	5 + 5	5 + 6	5 + 7	5 + 8	5 + 9	5 + 10
6	6+0	6+	6 + 2	6 + 3	6 + 4	6 + 5	6+6	6 + 7	6 + 8	6 + 9	6 + 10
7	7+0	7+	7 + 2	7 + 3	7 + 4	7 + 5	7+6	7 + 7	7 + 8	7 + 9	7 + 10
8	8 + 0	8+	8 + 2	8 + 3	8 + 4	8 + 5	8 + 6	8 + 7	8 + 8	8 + 9	8 + 10
9	9+0	9+	9 + 2	9 + 3	9 + 4	9 + 5	9+6	9 + 7	9 + 8	9 + 9	9 + 10
10	10 + 0	10+1	10 + 2	10 + 3	10 + 4	10 + 5	10+6	10 + 7	10 + 8	10 + 9	10 + 10

Ω

Objective & Strategy & Key Vocabulary	Concrete	Pictorial	Abstract	V
Adding multiples of en	50= 30 + 20 Model using dienes and bead strings	tens andtens makestens Use representations for base ten.	20 + 30 = 50 70 = 50 + 20 40 + = 60 = + 30 = 50	
Jse known number acts Part part whole	Children explore ways of making numbers within 20	20	□ + 1 = 16	
Jsing known facts	Ted Sam		3 + 4 = 7 Leads to 30 + 40 = 70 Leads to 300 + 400 + 700 '3 things and 4 things is always 7 things'	
Bar model	3+4=7	8 3+5=8	30 14 16 14 + 16 = 30	

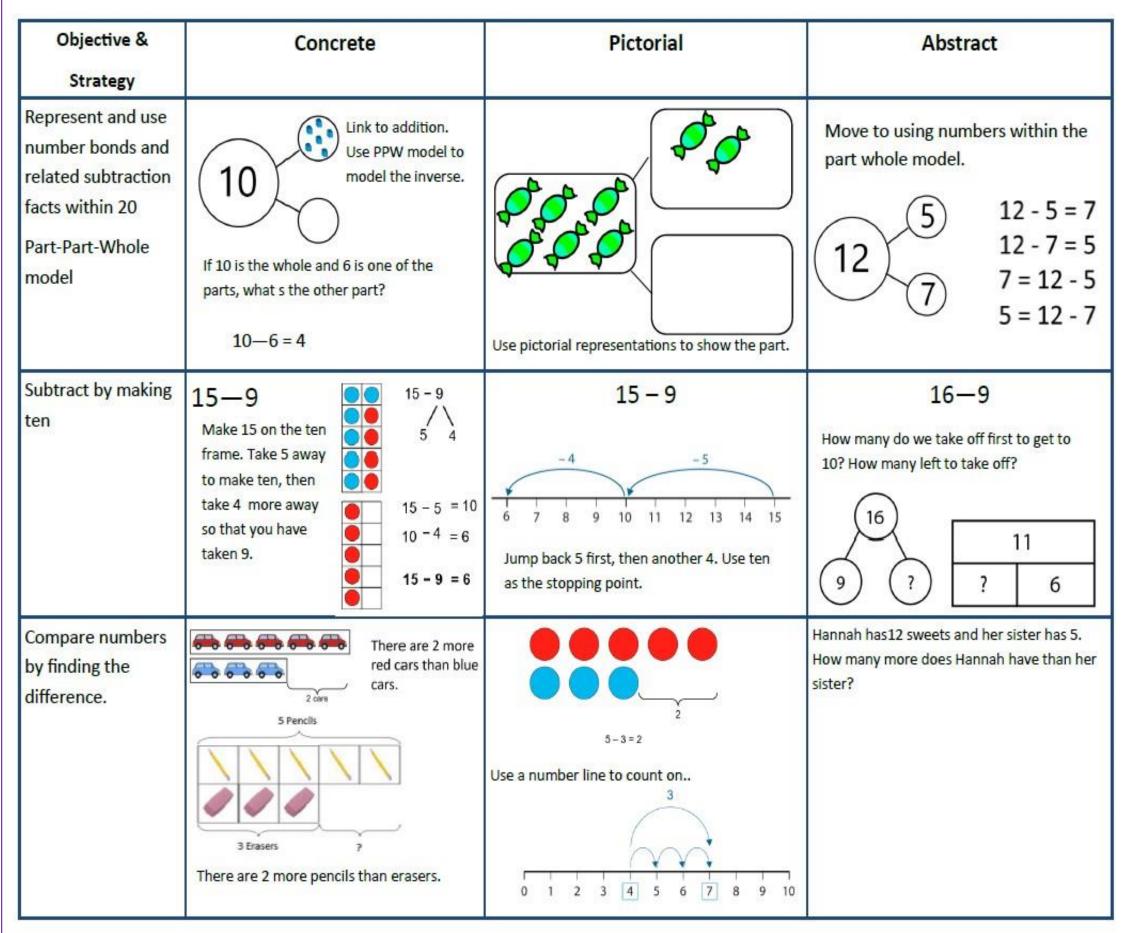
Objective & Strategy & Key Vocabulary	Concrete	Pictorial	Abstract
Add a two digit number and ones	17 + 5 = 22 Use ten frame to make 'magic ten Children explore the pattern. 17 + 5 = 22 27 + 5 = 32	Use part part whole and number line to model. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	17 + 5 = 22 17 Explore related facts 17 + 5 = 22 22 = 17 5 Explore related facts 17 + 5 = 22 22 = 17 + 5 22 = 17 + 5 5 + 17 = 22 22 = 5 + 17 22 - 17 = 5 17 = 22 - 5 22 - 5 = 17 5 = 22 - 17
Add a 2 digit num- ber and tens	25 + 10 = 35 Explore that the ones digit does not change	25 + 30 = 55 +10 +10 +10 25 35 45 55	27 + 10 = 37 27 + 20 = 47 27 + = 57 = + 30 = 67
Add two 2-digit numbers without bridging. 'Friendly numbers'	Model using dienes , place value counters and numicon Dienes and part-part-whole model: 45 + 23 = 68	+20 +5 Or +20 +3 +2 47 67 72 47 67 70 72 Use number line and bridge ten using part whole if necessary.	25 + 47 20 + 5

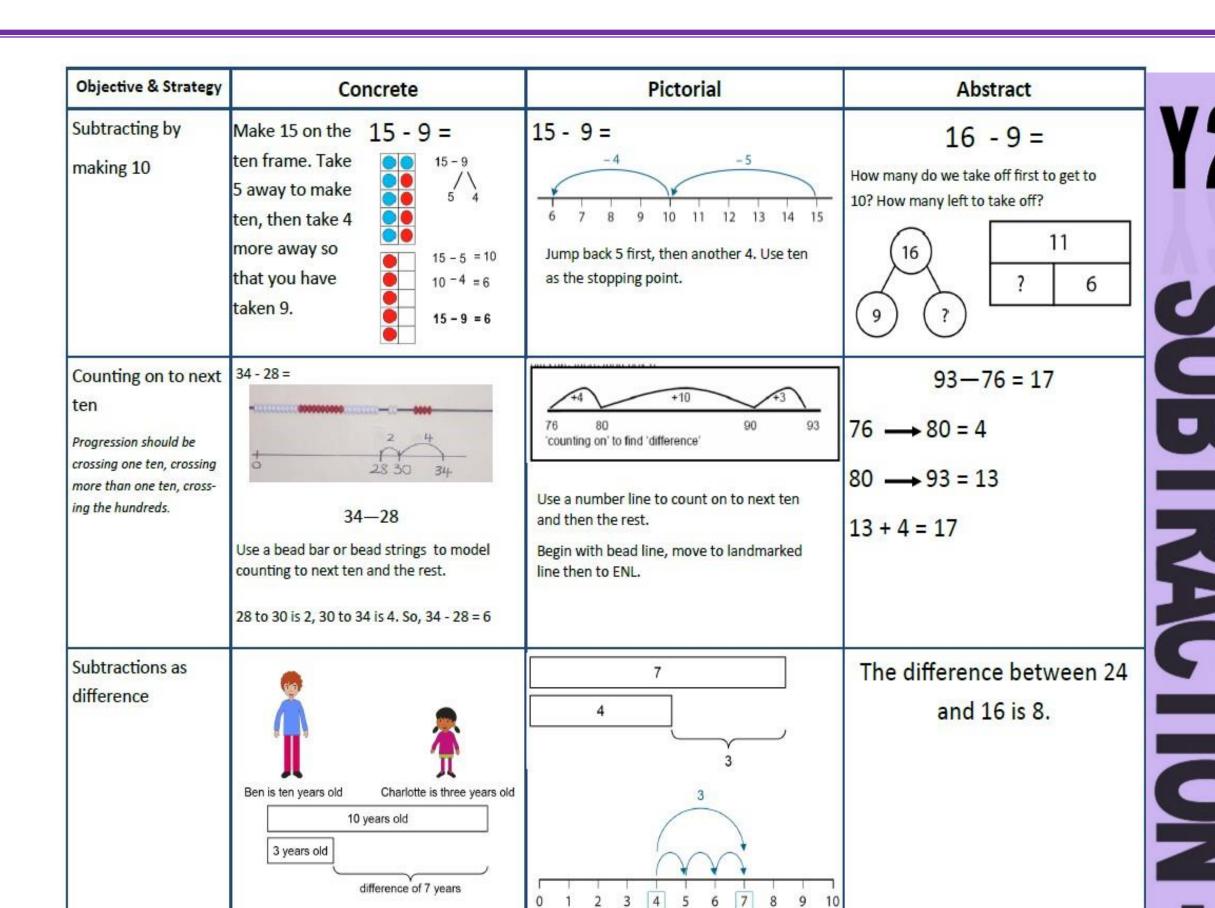
Objective & Strategy & Key Vocabulary	Concrete	Pictorial	Abstract
Add any two 2-digit numbers	Dienes and part-part-whole model: 26 + 37 = 63 63 50 + 13 = 63	26 + 30 + 7 + 30 + 7 56 60 63 + 4 + 3	24 + 38 = $29 +$ $= 51$ $38 + 24 =$ $+ 22 = 51$
Add three 1-digit numbers	Combine to make magic 10 first where relevant, or bridge 10 then add third	Use language of fist, then, then, now Pictorial: First Then Then Now Use part part whole to show magic ten 10 + 3 = 13	4+7+6 = 10+7 = 17 Combine the two numbers that make/ bridge ten then add on the third.
Adding two num- bers that bridge 10.	Use double sided counters and ten frames. Move counters to fill the ten frame and make Magic 10	Show on a number line how 5 is portioned into adding three, then adding 2.	7 + 5

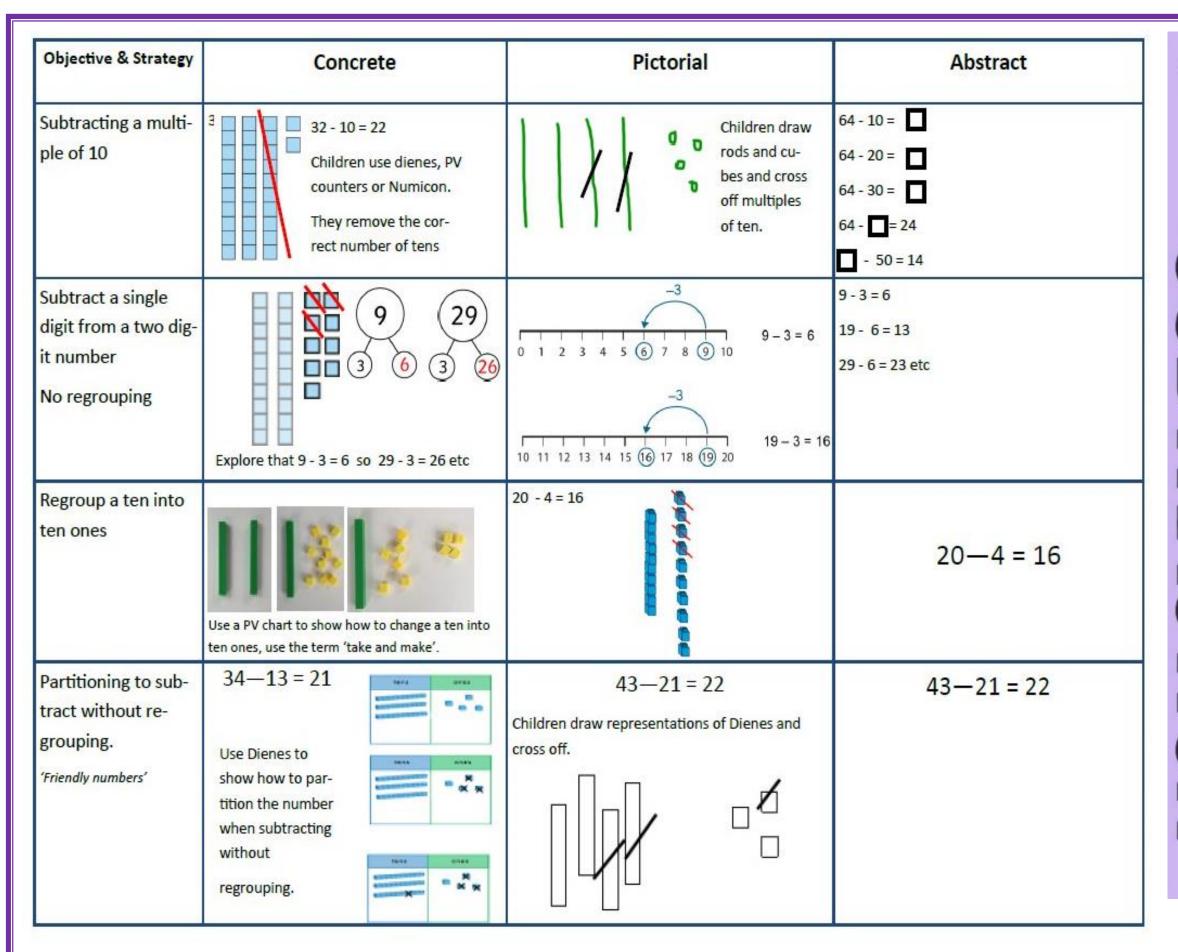
Objective & Strategy & Key Vocabulary	Concrete	Pictorial	Abstract
Y4—add numbers with up to 4 digits	Children continue to use dienes or pv counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand. Thousands	7 1 5 1 Draw representations using pv grid.	2634 + 4517 7141 1 Continue from previous work to carry ones, tens and hundreds. Relate to money and measures.
Y5—add numbers with more than 4 digits. Add decimals with 2 dec- imal places, including money.	As year 4 ones tenths hundredths 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.37 + 81.79 tens ones tents hundredtes 00 0000 0 00000 00000 00 00000 0 00000 00 00000 0 00000	22,634 + 15,673 38,307 1 1 £ 127.67 +£ 38.45 £ 166.12
Y6—add several num- bers of increasing com- plexity Including adding money, measure and decimals with different numbers of decimal points.	Some children may need to ruse manipulatives and/or representations for longer. See year 5		$ \begin{array}{r} 89,472 \\ 63,673 \\ + 3,016 \\ 156,161 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 $

Y4.6

Subtraction:




Written methods for Subtraction


It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of subtraction. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for subtraction which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for subtraction, each stage building towards a more refined method.

There are some key basic skills that children need to help with subtraction, which include:

- counting
- estimating
- recalling all addition pairs to 10, 20 and 100 along with their inverses (7 + 3 = 10, 10 3 = 7, 17 + 3 = 20, 20 3 = 17, 70 + 30 = 100, 100 30 = 70)
- knowing number facts to 10 and their inverses (6 + 2 = 8, 8 2 = 6)
- subtracting multiples of 10 (160 70) using the related subtraction fact, 16 7, and their knowledge of place value
- partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways (432 into 400 + 30 + 2 and also into 300 + 120 + 12)
- understanding and using subtraction and addition as inverse operations Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:
- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

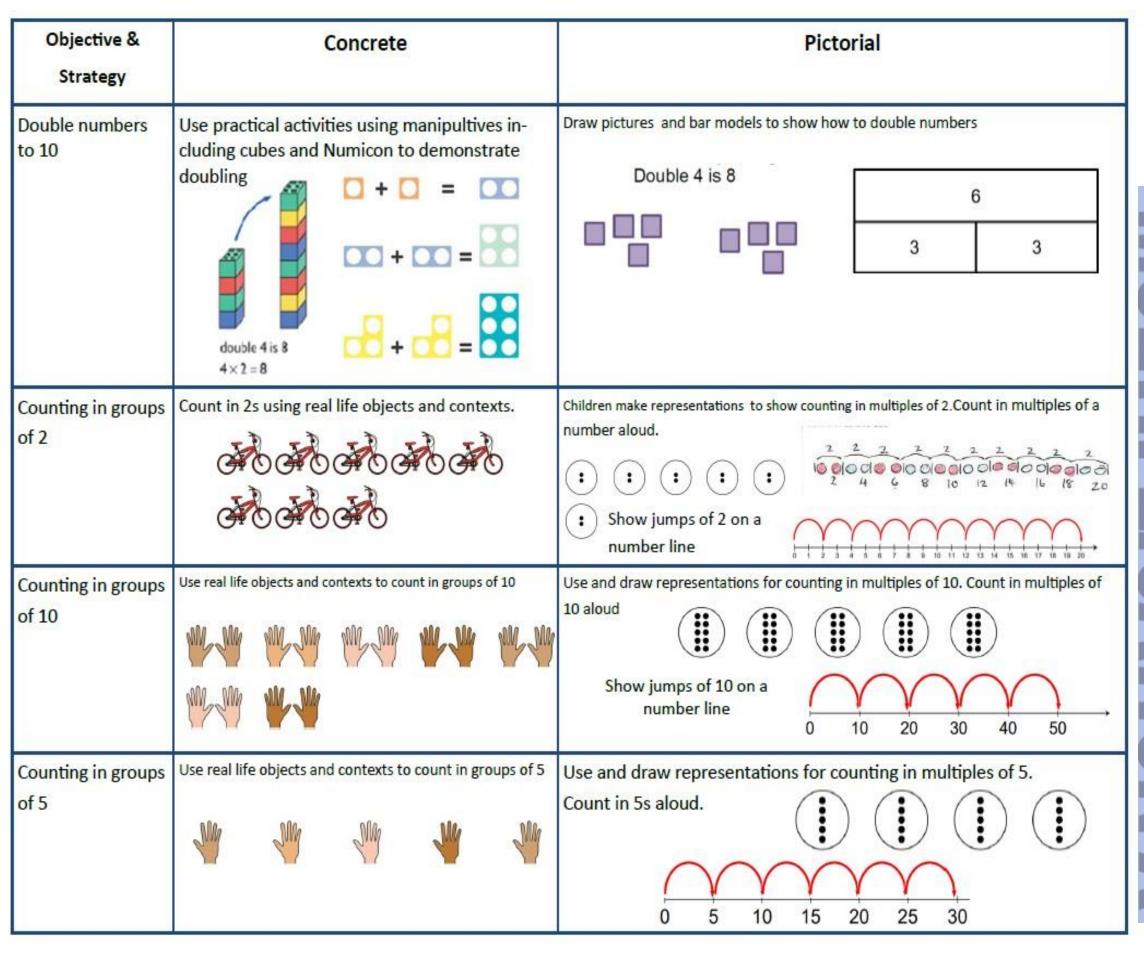
Objective & Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	47—32 Use base 10 or Numicon to model	Calculations 542 3 2 Draw representations to support understanding	$47-24=23$ $-\frac{40+7}{20+3}$ Intermediate step may be needed to lead to clear subtraction understanding. 32 -12 20
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	Tens Ones Tens	836-254=582 Begin by partitioning into pv columns $728-582=146$ Then move to formal method. $728-582=146$ $728-582=146$ $728-582=146$ Then move to formal method.

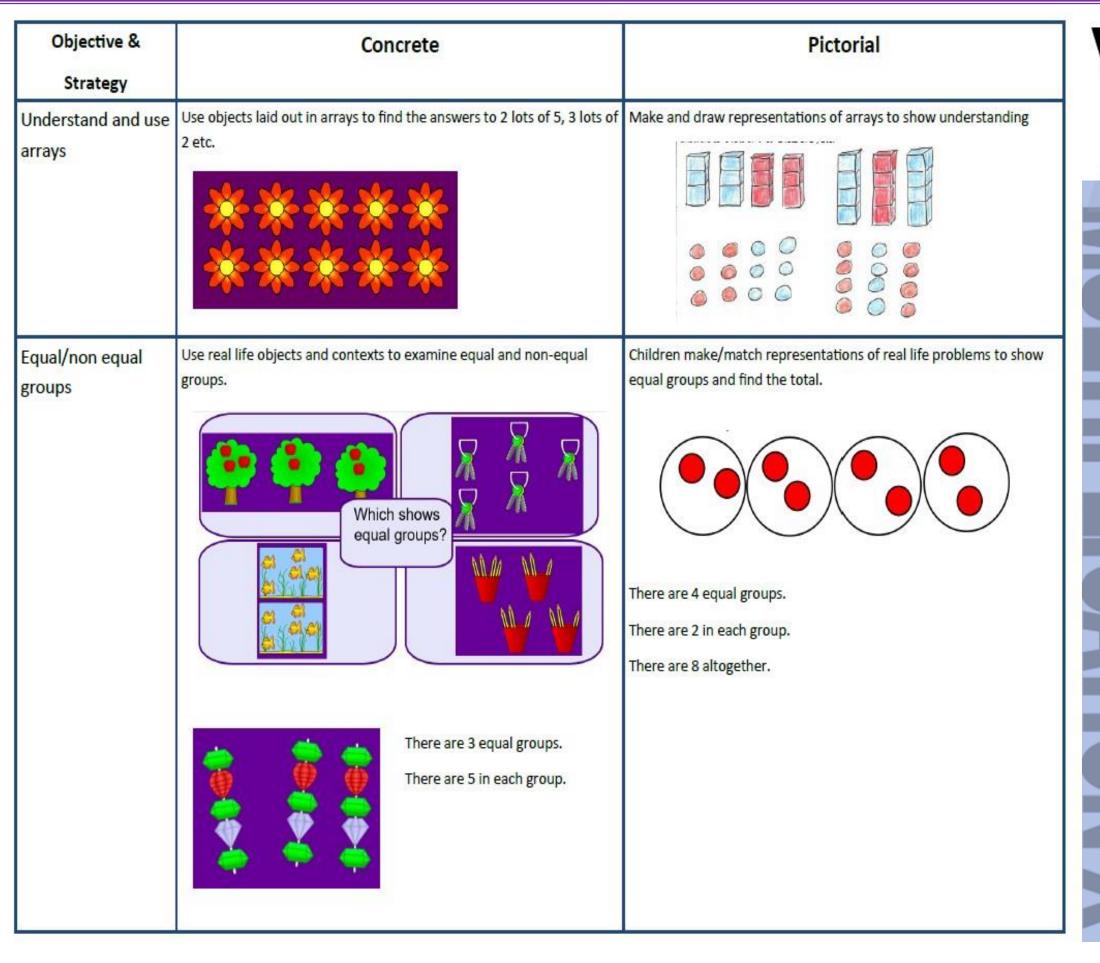
BIRACE ON

Objective & Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtrac- tion through context of money	234 - 179 O O O O O O O O O O O O O O O O O O	Children to draw pv counters and show their exchange—see Y3	2 X 5 4 - 1 5 6 2 1 1 9 2 Use the phrase 'take and make' for exchange
Year 5- Subtract with at least 4 dig- its, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal point.	As Year 4	Children to draw pv counters and show their exchange—see Y3	*3'X'0'8'6 - 2 2 8 2 8,9 2 8 Use zeros for place- holders 3 7 2 · 5 6 7 9 6 · 5
Year 6—Subtract with increasingly large and more complex numbers and decimal values.			" " 8 10, 6 9 9 - 89, 9 4 9 60, 7 5 0 " 10 15 · 3 4 11 9 kg - 36 · 08 0 kg 6 9 · 3 3 9 kg

Multiplication

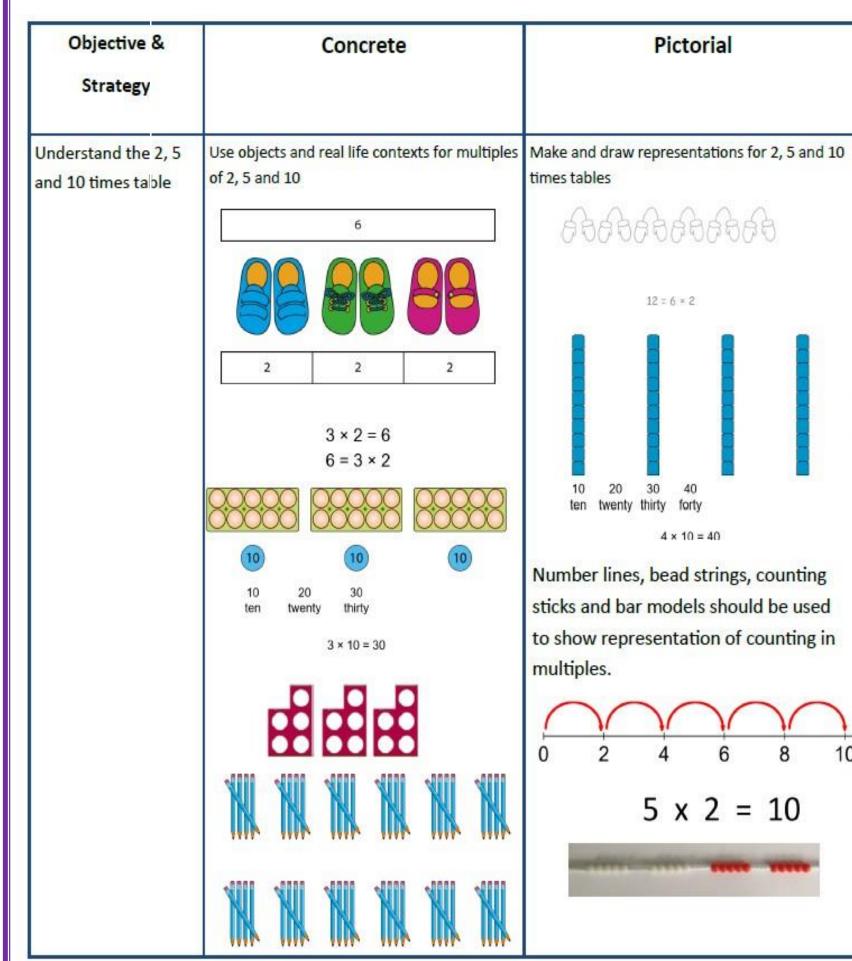
Written methods for Multiplication


It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of multiplication. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for multiplication which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for multiplication, each stage building towards a more refined method.


There are some key basic skills that children need to help with multiplication, which include:

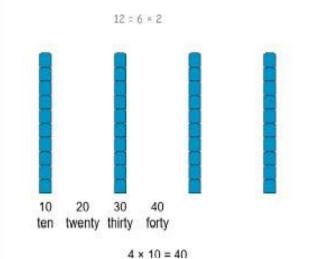
- counting
- estimating
- understanding multiplication as repeated addition
- recalling all multiplication facts to 12 × 12
- partitioning numbers into multiples of one hundred, ten and one
- working out products (70 × 5, 70 × 50, 700 × 5, 700 × 50) using the related fact 7 × 5 and their knowledge of place value
- adding two or more single-digit numbers mentally
- adding multiples of 10 (60 + 70) or of 100 (600 + 700) using the related addition fact, 6 + 7, and their knowledge of place value
- adding combinations of whole numbers
- understanding and using division and multiplication as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

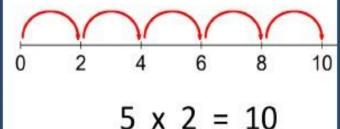

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Objective & Strategy	Concrete	Pictorial	Abstract
Double a 2-digit number	Model doubling using dienes and PV counters 40 + 12 = 52	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back togeth 16 10 6 12 20 + 12 = 32
Understand equal and non-equal groups	These are non— equal groups These are equal groups There are 5 equal groups.	Make representations and drawings of equal groups I have 4 groups of 3.	
	Each group has 3 cakes.		

Objective & Strategy	Concrete	Pictorial	Abstract
Use repeated addi- tion for multiplica- tions	Use objects and real life contexts. 2+2+2+2+2=10 There are 5 groups of 2. There are 10 socks altogether.	Make and draw representations to show repeated addition There are 3 sweets in one bag. How many sweets are in 5 bags altogether? 3+3+3+3+3 = 15	Create number sentences using repeated addition to match representations. 3 3 3 3 3 $3 + 3 + 3 + 3 = 12$
	There are 3 groups of 3. There are 9 altogether.	Use bar models for representations of repeated additions.	
Relate repeated addition to multiplication using the x sign.	Write multiplication sentences to match repeated addition.	Children make and draw representations and record both an addition sentence and a multiplication sentence. $1+1+1+1+1+1+1=6$ $6 \times 1+6$	Write multiplication sentences to match repeated addition, without the support of representations. 2+2+2+2+2=10 5 x 2 = 10



Pictorial


Abstract

times tables

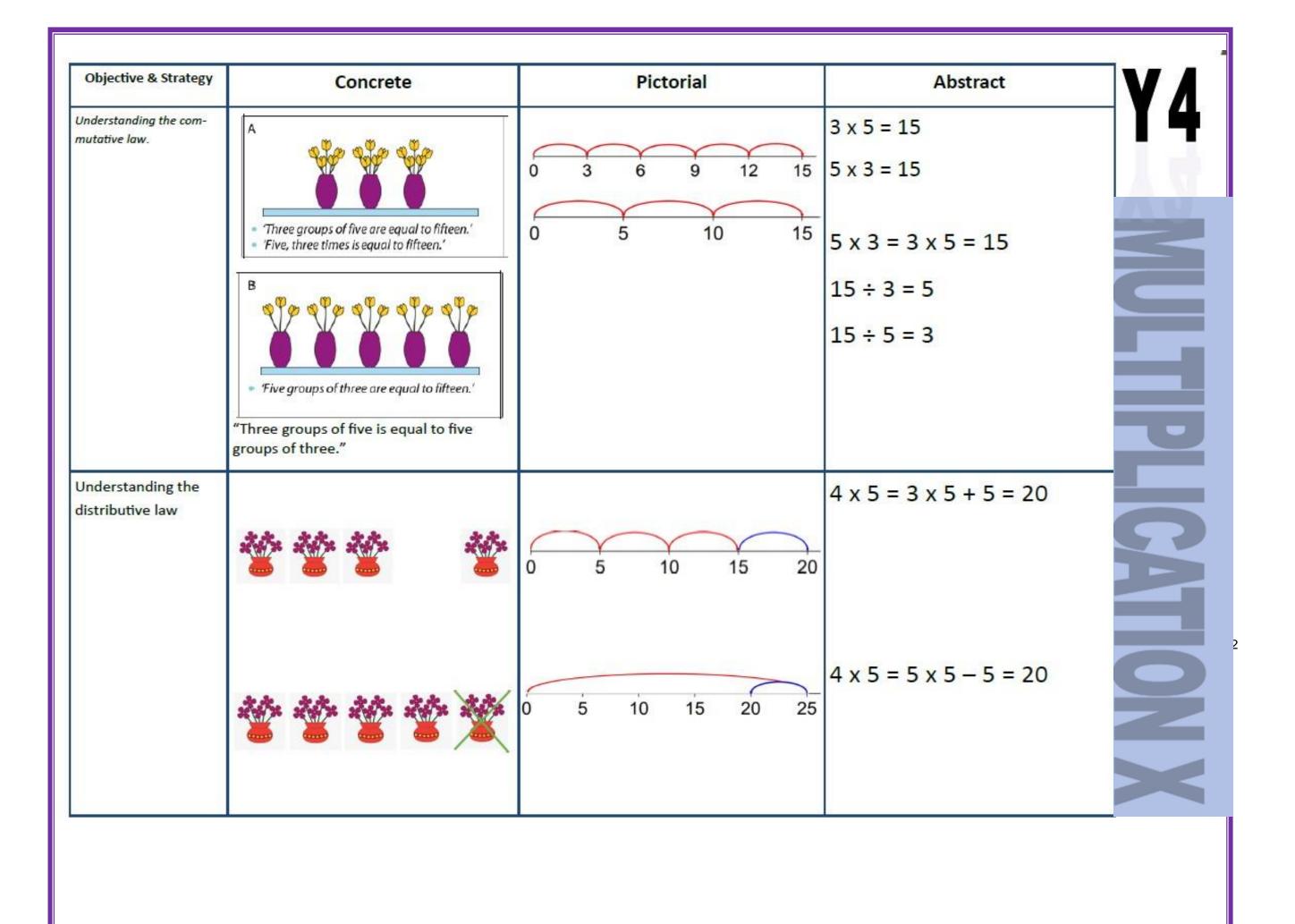
Number lines, bead strings, counting sticks and bar models should be used to show representation of counting in multiples.

Understand the terms factor and product

3	×	2	=	6
factor	×	factor	=	product

6	=	3	×	2
product	=	factor	×	factor

Count in multiples of a number aloud.


Objective & Strategy	Concrete	Pictorial	Abstract
700	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not	Use representations of arrays to show different calculations and explore commutativity. 5 × 2 = 10 5 groups of 2 2 groups of 5 2, five times 5, two times	12 = 3 × 4 12 = 4 × 3 Use an array to write multiplication sentences and reinforce repeated addition.
	affect the answer.		

Strategy	Concrete	Pictorial	Abstract	Y 3
Understand the 3 times table	Count in three using objects and representations of multiples of 3. 3 3 3 3	3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	There are 12 wheels. 4 × 3 = 12 3 × 4 = 12	
Understand the 6 times table	We can double our 3 times table to find our 6 times table.	3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6	12 x 3 = 36 6 x 6 = 36	
Understand the 9 times table	Count in nines using objects and representations of multiples of 9. Make links 9 being three groups of three.	9 9 9 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	There are 36 apples. 4 × 9 = 36 9 × 4 = 36	

Objective & Strategy	Concrete	Pictorial	Abstract V3
Understand the 4 times table	We can double our 2 times table to get the 4 times table 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 <td>$12 \times 2 = 24$ $6 \times 2 = 24$ There are 20 wheels. $5 \times 4 = 20$</td>	$12 \times 2 = 24$ $6 \times 2 = 24$ There are 20 wheels. $5 \times 4 = 20$
Understand the 8	How many wheels? Count in groups of 4. 4 4 4 4 4 We can double our 4 times table to get the 8	6 fours	4 × 5 = 20 6 × 4 = 24
times table	times table 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 eights 24 4 4 4 4 4 4	3 x 8 = 24
	**************************************	8 8 8	

Divisibility rules in 'families' – 2, 4 and 8				
2	A number is divisible by 2 if the ones digit is even.			
4	If halving a number gives an even value, then the number is divisible by 4. and For numbers with more than two digits: if the final two digits are divisible by 4 then the number is divisible by 4.			
8	If halving a number twice gives an even value, the number is divisible by 8.			

Objective & Strategy	Concrete	Concrete Pictorial		Y
Multiplying 2-digit by 1 digit using par- titioning (distributive law)	Show the links with arrays to illustrate the PV partitioning 4 rows of 10 4 rows of 3 Move onto base ten to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	$4 \times 10 = 40$ $4 \times 3 = 12$ $40 + 12 = 52$ $2 3$ $x 3$ $6 9$	
2 digit x 1 digit using PV counters (no regrouping)	tens ones tens ones 10 10 1 1 1 10 10 1 1 10 10 1 1 Chn can see array in the ones and the tens. There is a visual link to repeated addition.	Children practice, drawing their representations. 23×3 10000000000000000000000000000000000		

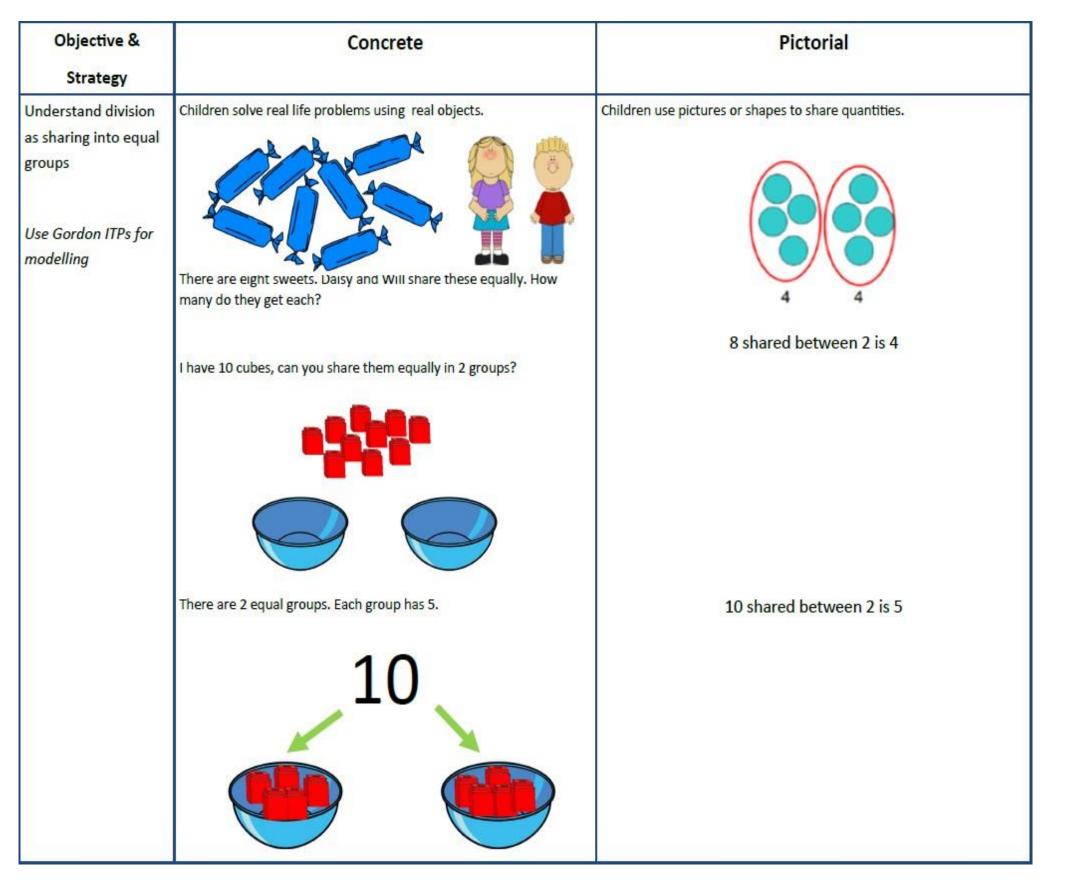
Objective & Strategy	Concrete		Pictorial		Abstract			
Multiply 3 digit numbers by 1 digit. (no ex- change)	finding group ing by 3 so we 123 x3 = 369 hundreds 300	s of a number. e need 3 rows 10 (0) 10 (0) 10 (0) + 60	ones ①①① ①① ①① ①① ①② with the ones.		present their work wit by drawing place value	The same of the sa	231 x 3 693	3 x 1 ones is three ones 3 x 3 tens is nine tens 3 x 2 hundreds is six hundreds
Multiply 3 digit	224 x 3		<u> </u>	261 x 2	ا سه ۱	-	2.4.1	4 times 1 <i>ones is</i> 4 ones
digit. (with ex-	hundreds	(1) (1)	① ① ① ①	H		0	241	4 times 4 tens is 16 tens. I
change)	60	00	0000	00	000000	0	<u>x 4</u>	put 6 tens down and carry ten tens which is now a hundred.
	Regroup ten o	ones to make a	①①①①	00	000000	0	964	4 times 2 hundreds is 8 hundreds. I add the hundred I have carried to make 9 hundreds.
	hundreds	tens	ones	H	1 +	0		
	00	000	0000	00	00000	0		
		00	0000	00	ر ا			
	@	000 0		04	1000000	0		
	600 +	70 + +672	2	500 +	20 + +522	2		

Objective & Strategy	Concrete	Pictorial	Abstract	
Multiply 3 and 4 digits x 1 digit.	Children may continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. 3024 x 3 thousands hundreds ones ones ones ones ones ones ones one	Children may continue to draw their understanding using place value grids.	3024 x 3 9072	
Multiply up to 4 digits by 2 digits	Manipulatives may still be used with the corresponding long multiplication modelled alongside. Begi with teen number x teen number. Progress to any 2 –4 digit number x 2 digit.	10 100 80 3 30 24	1 8 18 x 3 on the first row x 1 3 (8 x 3 = 24, carrying the 2 for 20, then 1 x 3) 1 8 0 x 3) 1 8 x 10 on the 2nd row. Show multiplying by 10 by putting zero in units first 100s 10s 1s 3 1 x 2 4 31 x 4 6 2 0 31 x 20 7 4 4	

Objective &	Concrete	Pictorial	Abstract
Strategy			
Multiply decimals up to 2 decimal places by a single digit			2.38 x 3 7 14 1 2 First we lay out the calculation Next, we write the decimal point in the answer (product). Finally, we carry out the multiplication. 3 x 8 hundredths is 24 hundredths 3 x 3 tenths is 9 tenths, add 2 tenths we carried is 11 tenths 3 x 3 ones is 6 ones, add 1 one we carried is 7 ones
Multiply up to 4 digit numbers by 2 digits.			3 1 2 × 2 8 2 4 9 6 6 2 4 0 8 7 3 6 1

Division

Written methods for Division


It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of division. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for division which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for division, each stage building towards a more refined method.

There are some key basic skills that children need to help with subtraction, which include:

- counting
- estimating
- understanding division as repeated subtraction
- partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways (432 into 400 + 30 + 2 and also into 300 + 120 + 12)
- recalling multiplication and division facts to 12 × 12
- recognising multiples of one-digit numbers and dividing multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value
- knowing how to find a remainder working mentally, for example, find the remainder when 48 is divided by 5
- understanding and using division and multiplication as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Objective & Strategy	Concrete	Pictorial	Abstract
Division as sharing (partitive)	There are 20 conkers shared equally between 5 children. h child gets 4 conkers.	Children use pictures or shapes to share quantities. They may use bar modelling to show and support understanding. 20 Number lines are used to show skip counting (counting forwards) 4 fives 4 fives and repeated subtraction (counting backwards).	20 ÷ 5 = 4
Division as grouping (quotitive)	Use cubes, counters or real objects or to aid understanding. There are 15 biscuits, there are 5 in each bag. How many bags?	3 fives +5 +5 +5 +5 +5 5 + 5 + 5 = 15 15 + 5 = 3 3 fives -5 -5	15 divided into groups of 5 is 3 $15 \div 5 = 3$
		15 - 5 - 5 = 0 15 ÷ 5 = 3	

Objective & Strategy	Concrete	Pictorial	Abstract
Understanding the Inverse			3 x 4 = 12 12 ÷ 4 = 3
			4 x 3 = 12 12 ÷ 3 = 4
			$2 \times 4 = 8$ $4 \times 2 = 8$ $8 \div 2 = 4$ $8 \div 4 = 2$ $8 = 2 \times 4$ $8 = 4 \times 2$ $2 = 8 \div 4$ $4 = 8 \div 2$ Show all 8 related fact family sentences.

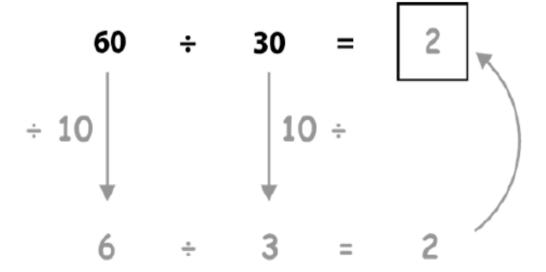
Objective & Strategy	Concrete	Pictorial	Abstract
Division with remainders.	I divide 14 cakes between 3 plates. How are the cakes shared?	Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r. 14 ÷ 3 = 4 r 2 dividend divisor quotient remainder
Division with re- mainders. (quotitive)	13 eggs are put into boxes. Each box holds 3 eggs. How are the eggs boxed?	Children may draw representations to show their understanding. Use bar models to show division with remainders.	13 ÷ 3 = 4 r 1
		13	
		3 3 3 1	

Divis	sibility rules in 'families' – 3, 6 and 9
3	For a number to be divisible by 3, the sum of the digits of the number must be divisible by 3.
6	For a number to be divisible by 6, the number must be divisible by <i>both</i> 2 <i>and</i> 3.
9	For a number to be divisible by 9, the sum of the digits of the number must be divisible by 9.

Divisibility rules in 'families' - 5 and 10				
5	A number is divisible by 5 if the ones digit is			
	5 or 0.			
10	A number is divisible by 10 if the ones digit			
	is 0.			

Concrete	Pictorial		Abstract						
Bracelets are made using 4 beads. There are 23 beads. How many bracelets can	Bar mo	del repr	esenta	tions m	ay be u	sed.			23 ÷ 4 = 5 r 3
Both and the state of the				23	3				
•	4	4		4	4		4	3	
4 scouts can fit in each tent. How many tents needed for 30 scouts?				20	1				30 ÷ 4 = 7 r 2
	4	4	4	4	4	4	4	2	
4 4 4					2000		330		8 tents are needed.
4 4 4									Discuss with pupils the need to round up in this context.
	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over? 4 scouts can fit in each tent. How many	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over? 4 scouts can fit in each tent. How many	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over? 4 4 4 4 4 4 5 4 5 5 6 6 6 6 6 6 6 6 6 6	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over? 4 4 4 4 scouts can fit in each tent. How many tents needed for 30 scouts?	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over? 23 4 4 4 4 scouts can fit in each tent. How many tents needed for 30 scouts?	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over? 23 4 4 4 4 4 4 scouts can fit in each tent. How many tents needed for 30 scouts? 30	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over? 23 4 4 4 4 30 4 scouts can fit in each tent. How many tents needed for 30 scouts?	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over? 23 4 4 4 4 4 4 4 scouts can fit in each tent. How many tents needed for 30 scouts?	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over? 23 4 4 4 4 4 3 4 scouts can fit in each tent. How many tents needed for 30 scouts?

Objective & Strategy	Concrete	Pictorial	Abstract
Divide 2 and 3 digit numbers by 1 digit.	96 ÷ 3 Use place value counters to makes groups of the divisor, starting with the largest value digit.	Students use drawn diagrams with dots or circles to show their understanding.	Begin with divisions that divide equally with no remainder. 1 2 4
Short Division	3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 7 2
	There are 2 groups of 3 ones. 42 ÷ 3		Move onto divisions with a remainder. Return to concrete if necessary.
	1 4 3 0 0 1 3 0 1000 0 1 3 0 1000		1 3 8 r 3
	There is 1 group of 3 tens. There is a ten left over. We exchange this for 10 ones. 12 ones divided by 3 is 4		4 5 2 7
	432 ÷ 4		
	4 1 0 8		
	There is 1 group of 4 hundreds. There are no groups of 4 tens and three tens left over. There are 8 groups of 4 ones.		


Y4.

Divis	ibility rules in numerical order
2	A number is divisible by 2 if the ones digit is even.
3	For a number to be divisible by 3, the sum of the
	digits of the number must be divisible by 3.
4	If halving a number gives an even value, then the
	number is divisible by 4.
	and
	For numbers with more than two digits: if the final
	two digits are divisible by 4 then the number is
	divisible by 4.
5	A number is divisible by 5 if the ones digit is
	5 or 0.
6	For a number to be divisible by 6, the number must
	be divisible by both 2 and 3.
8	If halving a number twice gives an even value, the
	number is divisible by 8.
9	For a number to be divisible by 9, the sum of the
	digits of the number must be divisible by 9.
10	A number is divisible by 10 if the ones digit is 0.

Pictorial	Abstract
	Pupils use understanding of x and ÷ 10 to make connections.
	6.3 ÷ 9 = 0.7 ×10 \div 1 6.3 ÷ 9 = 7
	Children build on work from year 4, now with decimals
	$6)2 \cdot 4 1$

Division of 2 digits by 2 digits

Using x & ÷ by 10, 100 etc and relating this to a short division method.

Long Division—2 digits divided by 2 digits

H T O

30 does not go into 8. So, combine the 8 tens with the 5 ones.

Subtract the 60 from

the 85 and this leaves

25.

H T C

2 30)8 5

6 0

Y6

H T O

2 30\8 5

6 0

2 5

H T C

2 r 25

30)8 5

6 0

2 5

85 divided by 30 is 2 with a remainder of 25

30 goes into 85 twice,

which is 60.

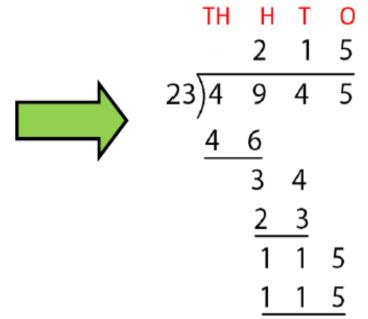
Long Division—3 digits divided by 2 digits

31 does not go into 4 (hundreds).

We combine the 4 hundreds with the tens to give 43 tens. 31 goes into 43 once which is 31, we record this underneath.

Subtract to find the remainder. 31 from 43 leaves 12.

times, which is 124.


next digit to give 124.

1 2 4 1 2 4 0 We subtract to show there is no remainder

Long Division—progressing to 4 or more digits

23 goes into 49 twice which is 46. We subtract this from 49 to give a remainder of 3.

We combine the 3 left over with the next digit to give 34. 23 goes into 34 once with 11 remaining.

We combine the 11 with the next digit to make 115. 23 goes into 115 5 times with no remainder.

Long Division—procedural summary (remainder in any of the digits)

1. Divide.	2. Multiply & subtract.	3. Drop down the next digit.	
1 2)278	1 2)278 -2 0	18 2)278 -2↓ 07	
Two goes into 2 one time, or 2 hundreds ÷ 2 = 1 hundred.	Multiply 1 × 2 = 2, write that 2 under the two, and subtract to find the remainder of zero.	Next, drop down the 7 of the tens next to the zero.	
Divide.	Multiply & subtract.	Drop down the next digit.	
13 2)278 -2 07	13 2)278 -2 07 -6	13 2)278 -2 07 -6 18	
Divide 2 into 7. Place 3 into the quotient.	Multiply 3 × 2 = 6, write that 6 under the 7, and subtract to find the remainder of 1 ten.	Next, drop down the 8 of the ones next to the 1 leftover ten. 3. Drop down the next digit.	
1. Divide.	2. Multiply & subtract.		
139 2)278 -2 07 -6	139 2)278 -2 07 -6 18 -18	139 2)278 -2 07 -6 18 -18	
Divide 2 into 18. Place 9 into the quotient.	Multiply 9 × 2 = 18, write that 18 under the 18, and subtract to find the remainder of zero.	There are no more digits to drop down. The quotient is 139.	